A linearly implicit structure-preserving scheme for the fractional sine-Gordon equation based on the IEQ approach

نویسندگان

چکیده

This paper aims to develop a linearly implicit structure-preserving numerical scheme for the space fractional sine-Gordon equation, which is based on newly developed invariant energy quadratization method. First, we reformulate equation as canonical Hamiltonian system by virtue of variational derivative functional with Laplacian. Then, utilize centered difference formula discrete equivalent derived method in direction, and obtain conservative semi-discrete scheme. Subsequently, applied resulting arrive at fully-discrete The stability, solvability convergence maximum norm are given. Furthermore, fast algorithm Fourier transformation technique used reduce computational complexity practical computation. Finally, examples provided confirm our theoretical analysis results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical solutions for the fractional Klein-Gordon equation

In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.

متن کامل

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

Flow equation approach to the sine-Gordon model

A continuous sequence of infinitesimal unitary transformations is used to diagonalize the quantum sine-Gordon model for β2 ∈ (2π,∞). This approach can be understood as an extension of perturbative scaling theory since it links weakto strong-coupling behavior in a systematic expansion: a small expansion parameter is identified and this parameter remains small throughout the entire flow unlike th...

متن کامل

developing a pattern based on speech acts and language functions for developing materials for the course “ the study of islamic texts translation”

هدف پژوهش حاضر ارائه ی الگویی بر اساس کنش گفتار و کارکرد زبان برای تدوین مطالب درس "بررسی آثار ترجمه شده ی اسلامی" می باشد. در الگوی جدید، جهت تدوین مطالب بهتر و جذاب تر، بر خلاف کتاب-های موجود، از مدل های سطوح گفتارِ آستین (1962)، گروه بندی عملکردهای گفتارِ سرل (1976) و کارکرد زبانیِ هالیدی (1978) بهره جسته شده است. برای این منظور، 57 آیه ی شریفه، به صورت تصادفی از بخش-های مختلف قرآن انتخاب گردید...

15 صفحه اول

Generalized solution of Sine-Gordon equation

In this paper, we are interested to study the Sine-Gordon equation in generalized functions theory introduced by Colombeau, in the first we give result of existence and uniqueness of generalized solution with initial data are distributions (elements of the Colombeau algebra). Then we study the association concept with the classical solution.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Numerical Mathematics

سال: 2021

ISSN: ['1873-5460', '0168-9274']

DOI: https://doi.org/10.1016/j.apnum.2020.10.009